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TWO CHARACTERIZATIONS OF SUFFICIENT MATRICES

by Richard W. COTTLE and Sy-Ming GUU

Dedicated to Professor Albert W. Tucker on the occasion of his 85th birthday.

ABSTRACT

Two characterizations are givp,, for the class of sufficient matrices defined by
Cottle, Pang, and Venkateswaran. The first is a direct translation of the definition
into linear programming terms. The second can be thought of as a generalization
of a theorem of T.D. Parsons on P-matrices.

1. Introduction

This note concerns some new classes of matrices that have arisen in connection with the
linear complementarity problem [16], [6], namely the row and column sufficient matrices. A
matrix M E R'nn is said to be column sufficient if for all x E R7'

x(Mx)i<O0 i= l,...,n ==€, xi(Mx)i=O i= l,...,n,

and M is said to be row sufficient if MT is column sufficient. A matrix that is both row and
column sufficient is simply called sufficient.

The intrinsic role played by these matrix classes in the theory of linear complementarity
problem (LCP) is documented in [7] and will not be repeated here. These matrix classes
have algorithmic significance for the LCP as well. It was noted in [7] that nondegenerate
linear complementarity problems with row sufficient matrices can be processed by Lemke's
method [15]. The same can be said for the principal pivoting method [4] as shown in [2].
Column sufficiency is useful in justifying the least-index degeneracy resolution scheme in
connection with the principal pivoting method, and it is conjectured that the same is true
for Lemke's method. (See [3].) Row and column sufficient matrices have also recently turned
up in papers on interior-point algorithms for the LCP. (See [17], [14].) For all these reasons,
it appears that row and column matrices are valuable additions to the literature of the linear
complementarity problem.

Up to now, a drawback of these matrices has been the lack of methods for identifying them.
The aim of this note is to record two finite tests for sufficiency. Unfortunately, both are
combinatorially explo-;v,-, h'nce they cannnt be tecommended for checking matrices of large
order. Nonetheless, it is worthwhile to have some constructive charact, . izations, especially
if they stimulate research leading to more efficient testing methods.



2. Basic properties

The first thing to be said about column (row) sufficient matrices is that they exist. In fact, all
P-matrices' are sufficient as are all positive semi-definite matrices (regardless of symmetry).
A less familiar matrix class whose elements are all sufficient is P1, the real square matrices
having nonnegative principal minors all but one of which are positive. (See [8].) Actually,
the column (row) sufficient matrices include the column (row) adequate matrices introduced
by Ingleton [12], [13]. (See also Eaves [9].) Hence adequate matrices are sufficient.

All these examples of column (row) sufficient matrices happen to be subclasses of Po the class
of square matrices with nonnegative principal minors. As a matter of fact, a notable property
of column sufficient matrices (and hence of row sufficient matrices) is that all their principal
minors are nonnegative. (See [7].) This property is far from characterizing these matrices,
however. The class P 0 is simply too large. The task is to narrow it down appropriately.

Several properties of column (row) sufficient matrices are established in [2]. Among them are
the following assertions.

(Al) Every principal rearrangement PTMP of a column (row) sufficient matrix M is column
(row) sufficient.

(A2) If M is column (row) sufficient, then so is DMD for any conformable diagonal matrix
D.

(A3) Every principal submatrix of a column (row) sufficient matrix is column (row) sufficient.

(A4) A matrix of the form M 0 0
with b € 0 cannot be column sufficient. Its transpose cannot be row sufficient.

(A5) Every principal pivotal transform of a column (row) sufficient matrix is column (row)
sufficient.

3. A test for column sufficiency via linear programming

The facts that column sufficient matrices have nonnegative principal minors (hence nonnega-
tive diagonal entries) and that all their principal submatrices are column sufficient (see (A3)
above) suggests that there ought to be an inductive test for column sufficiency (and likewise
row sufficiency). Our aim is here is to exhibit such a test.

ActLually, what we test for is violation of the defining condition so that if column sufficiency
is verified if the test fails. This approach is akin to the one used in [5] where an inductive
test for copositivity was proposed.

'That is, matrices whose principal minors are all positive. See Gale and Nikaido [11].
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Definition. A matrix M E R"'f will be called column sufficient of order r (1 < r < n) if
every r x r principal submatrix of M is column sufficient.

Natural variants of this definition can be used to define row sufficiency of order r and suffi-
ciency of order r.

The inductive test for column sufficiency begins with checking the main diagonal for nonneg-
ativity (that is, column sufficiency of order 1). The n x n matrix M is not column sufficient
if and only if there exists a vector x E R n such that

n

x(Mx)i _0 i =- 1,...,n and Zx(Mx), <0. (1)
i=1

Now if M is known to be column sufficient of order n - 1 where n - 1 > 1, and x satisfies (1),
then xi $6 0 i = 1,..., n. This says nothing about the signs of the xi, however. In principle,
all sign 2n patterns are eligible, although some can be ruled out on qualitative grounds.
For example, (1) has no solution when x > 0 and M has a semi-positive (nonnegative and
nonzero) row. More generally, when the sign pattern of x and that of any row of M imply a
positive inner product, the system (1) has no solution. Of course, (1) can be inconsistent for
othcr reasons.

By modifying the matrix, M, we may assume that x > 0. This follows from (A2) by taking
D to be the unique diagonal matrix such that D2 = I and Dx > 0 for every vector x of a
given (all nonzero) sign pattern. Specifically,

xi(Mx)i = (Dx)i((DMD)(Dx))i i = 1,...,n. (2)

This being the case, we may assume x > 0 provided we replace M by DMD. When this is
done, the modified homogeneous inequality system (1) is equivalent to

(DMD)x < 0

eT(DMD)x < -1 (3)

x>e

where eT = (1,. .. ,1) E R n . One way to check (3) for consistency is to solve the linear
program

minimize eT(DMD)x

(LP:D) subject to -(DMD)x > 0 (4)

x>e

Note that if x is fcasible, so is Ax for A > 1. Thus, if during the solution process the objec-
tive function of (LP: D) turns negative for some feasible (not necessarily optimal) so'ution,
then the computation (tclativc to (LP: D)) can be terminated as its objective function is
unbounded below.

The prospect of solving 2" linear inequality systems or linear programs for each r < n is not
a happy one, but for small n it is tolerable.
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4. A generalization of Parsons' Theorem

Paraphrased, a theorem of Parsons [18] states that a real square matrix M belongs to P if
and only if every principal pivotal transform of M is a P-matrix of order 1. (For a short,
scminal paper on principal pivotal transforms of square matrices, see [19].) Our second
characterization of sufficient matrices can be viewed as a generalization of Parsons' result.

We begin with a characterizition of 2 x 2 column sufficient matrices.

Lemma 1. The matrix M e R 2 is column sufficient if and only if

(i) M E Po;

(ii) no principal pivotal transform or principal rearrangement of M has the form

(0 0) b# 60.
Proof. The the necessity of (i) and (ii) has already been noted in Section 2. To prove the
converse, we may immediately dispense with two extreme cases: M C P and M = 0. Such
matrices are column (and row) sufficient. Thus, M must have at least one principal minor
that equals 0. If both diagonal entries are zero, then either M = 0 or else M has the sign
pattern

( F 0

which is to say that the off-diagonal entries are nonzero and of opposite sign. Matrices of this
form are easily shown to be column (and row) sufficient. (See [2].) Suppose M or a principal
rearrangement thereof has the sign pattern

T- 0

If

xI(mIIxI + m 12x 2) 0,

x 2 (m 2 1 x 1 + m 2 2 x 2 ) 0,

then

m12xIx 2 !_ -m 1 1x1 _ 0 and m 21xex 2 <0 .

Since m1 2m 21 < 0, it follows that xlx 2 = 0 and then that x, = 0. This is enough to prove
that M is column sufficient. The remaining possibility is that the diagonal entries of Al are
positive and M is singular. Then M must be column adequate, and such matrices are column
sufficient. 0-
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An equivalent way to put Lemma 1 is as follows.

Lemma 2. The matrix M E R12x 2 is column sufficient if and only if for every principal
pivotal transform ft of M,

(i) friji> 0 i =1,2;

(ii) fzr i =- 1,9 if ii = 0 and fnij = 0 (j 7L i), then rhnj = 0.

Proof. Omitted. Dl

Lemma 3. If M E Rn n (n > 2) and every principal pivotal transform of M is column
sufficient of order 2, then M E P0 and every nonsingular principal submatrix of Al can be
inverted by a sequence of principal pivots of order 1 or 2.

Proof. To prove that M E P0, it is enough to show that det M > 0. Indeed, M has a
nonnegative diagonal and all principal submatrices of M of order at 2 or more are column
sufficient of order 2. This can be used to start an inductive proof. We may assume that
M $ 0. Then either M has a positive diagonal entry or it has a positive principal minor of
order 2. In either case, a principal pivot of order 1 or 2 is possible. By Schur's determinantal
formula (see [1]), the determinant of M equal the determinant of the pivot block (which is
positive) times that of the Schur complement of the pivot block. Hence the determinant of
M and the determinant of the Schur complement have the same sign. This argument can
be repeated until either M is inverted (and hence has a positive determinant) or the Schur
complement is a zero matrix (in which case det M = 0). E3

For ease of reference in the proof of Theorem 1 below, we state an important characterization
of P 0-matrices due to Fiedler and Ptik [10].

Lemma 4. Let M E R'n. Then M E Po if and only if for every nonzero vector x E R
there exists an index k such that Xk 5 0 and xk(Mx)k > 0.

Proof. Omitted. El

The following simple consequence of Lemma 2 is a characterization of sufficient matrices of
order 2.

Lemma 5. The matrix M E R2"2 is (row and column) sufficient if and only if for every
principal pivotal transform R of M,

(i) rhij > 0 i = 1,2;

(ii) for i = 1,2, if rhij = 0, then either 77,ij = rhji = 0 or fmijmnji < 0 for ji.

Proof. Omitted. [

We now wish to characterize sufficient matrices of order 3 or more.
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Theorem 1. Let Al E R'Xn where n > 3. The following statements are eq,,ivalent:

(i) M is sufficient;

(ii) every principal pivotal transform of M is sufficient of order n - 1.

Proof. The fact that (i) implies (ii) follows from (A) and (A3). For the converse, we first
show that M is column sufficient. Assume y = Mx and xjy, < 0 for i = 1,... ,n for some
vector x. In this representation, y is basic (dependent) and x is nonbasic (independent). If
any component of x equals zero, it follows from (ii) that xiyj = 0 for all i = 1,. . . , n. Thus,
we may assume xi 0 for all i. If Yk = 0 for some k, there are three possibilities: (a) the k-th
row and column of M are zero in which case (ii) implies xjyi = 0 for all i; (b) it is possible to
pivot on mkk > 0 in which case Yk = 0 plays the role of xk above; (c) it is possible to carry
out a block pivot of order 2 in which Yk = 0 again plays the role of a nonbasic variable whose
value is zero, and the preceding argument applies. The remaining situation is the one where
xkyk < 0 for all k, and we need to show that this cannot occur. We do this by proving that
M E Po and invoking Lemma 4. Clearly M is P0 of order n - 1, the proof will be complete
once it is shown that det M > 0. Now if M has a positive diagonal entry, it can be used
as a pivot element to generate a principal pivotal transform of M. The corresponding Schur
complement is a sufficient matrix of order n - 1 and as such has a nonnegative determinant.
B,it the determinant of the Schur complement is det M divided by the pivot element. Hence
det M is nonnegative. If the diagonal of M is zero and M has a row of zeros, then its
determinant is zero. If M has a zero diagonal but no row of zeros, then it has a nonsingular
2 by 2 principal submatrix with a positive determinant. When used as a pivot block, this
submatrix gives rise to a Schur complement which by hypothesis must be a sufficient matrix
of order n - 2 and accordingly must have a nonnegative determinant. Once again, the Schur
determinantal formula implies that det M > 0. This shows that M must be a P0 -matrix. El

As an easily proved consequence, we obtain the aforementioned generalization of Parsons'
theorem; it runs as follows.

Theorem 2. Let M E R nXn where n > 2. The following statements are equivalent:

(i) M is sufficient;

(ii) every principal pivotal transform of M is sufficient of order 2.

Proof. For n = 2, the theorem is trivial; for n > 3, the result follows by repeated application
of Theorem 1. C3
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